MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 11
Due date: Dec 9 (Wed)
Exercises from the textbook. 14.5, 14.10, 14.43, 14.45, 14.58, 14.60
Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).

1. Let $c>0$.
(a) Prove that the sequence $(\sqrt[n]{c})_{n}$ converges.

Hint: Consider the cases $c<1$ and $c>1$ separately.
(b) Find $\lim _{n \rightarrow \infty} \sqrt[n]{c}$.

Hint: Once you realize what the limit should be, suppose it isn't, so it is either bigger or smaller, and derive a contradiction in each case.
2. Let $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n}$ be sequences of positive reals and suppose that for each $n \in \mathbb{N}, b_{n} \geq a_{n}$. Prove that if $\sum_{n=1}^{\infty} a_{n}$ diverges, then so does $\sum_{n=1}^{\infty} b_{n}$.
3. (a) Prove that $\sum_{n=2}^{\infty} \frac{1}{(n-1) n}$ converges and find the sum.
(b) Conclude that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. You may not use the result proved in class that $\sum_{n=1}^{\infty} \frac{1}{n^{1+p}}$ converges for any $p>0$.

